Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lancet Planet Health ; 8(4): e270-e283, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38580428

RESUMO

The concurrent pressures of rising global temperatures, rates and incidence of species decline, and emergence of infectious diseases represent an unprecedented planetary crisis. Intergovernmental reports have drawn focus to the escalating climate and biodiversity crises and the connections between them, but interactions among all three pressures have been largely overlooked. Non-linearities and dampening and reinforcing interactions among pressures make considering interconnections essential to anticipating planetary challenges. In this Review, we define and exemplify the causal pathways that link the three global pressures of climate change, biodiversity loss, and infectious disease. A literature assessment and case studies show that the mechanisms between certain pairs of pressures are better understood than others and that the full triad of interactions is rarely considered. Although challenges to evaluating these interactions-including a mismatch in scales, data availability, and methods-are substantial, current approaches would benefit from expanding scientific cultures to embrace interdisciplinarity and from integrating animal, human, and environmental perspectives. Considering the full suite of connections would be transformative for planetary health by identifying potential for co-benefits and mutually beneficial scenarios, and highlighting where a narrow focus on solutions to one pressure might aggravate another.


Assuntos
Doenças Transmissíveis , Ecossistema , Animais , Humanos , Mudança Climática , Biodiversidade , Modelos Teóricos , Doenças Transmissíveis/epidemiologia
2.
Am Nat ; 202(6): 753-766, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38033177

RESUMO

AbstractThermal performance curves (TPCs) are increasingly used as a convenient approach to predict climate change impacts on ectotherms that accounts for organismal thermal sensitivity; however, directly applying TPCs to temperature data to estimate fitness has yielded contrasting predictions depending on assumptions regarding climate variability. We compare direct application of TPCs to an approach integrating TPCs for different fitness components (e.g., per capita birth rate, adult life span) across ectotherm life cycles into a population dynamic model, which we independently validated with census data and applied to hemipteran insect populations across latitude. The population model predicted that climate change will reduce insect fitness more at higher latitudes due to its effects on survival but will reduce net reproductive rate more at lower latitudes due to its effects on fecundity. Directly applying TPCs underestimated climate change impacts on fitness relative to incorporating the TPCs into the population model due to simplifying survival dynamics across the life cycle. The population model predicted that climate change will reduce mean insect density and increase population variability at higher latitudes via reduced survival, despite faster development and a longer activity period. Our study highlights the importance of considering how multiple fitness components respond to climate variability across the life cycle to better understand and anticipate the ecological consequence of climate change.


Assuntos
Mudança Climática , Insetos , Animais , Temperatura , Insetos/fisiologia , Estágios do Ciclo de Vida , Fertilidade
4.
Trends Ecol Evol ; 38(11): 1072-1084, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37479555

RESUMO

Fire regimes are a major agent of evolution in terrestrial animals. Changing fire regimes and the capacity for rapid evolution in wild animal populations suggests the potential for rapid, fire-driven adaptive animal evolution in the Pyrocene. Fire drives multiple modes of evolutionary change, including stabilizing, directional, disruptive, and fluctuating selection, and can strongly influence gene flow and genetic drift. Ongoing and future research in fire-driven animal evolution will benefit from further development of generalizable hypotheses, studies conducted in highly responsive taxa, and linking fire-adapted phenotypes to their underlying genetic basis. A better understanding of evolutionary responses to fire has the potential to positively influence conservation strategies that embrace evolutionary resilience to fire in the Pyrocene.

5.
Glob Chang Biol ; 29(6): 1451-1470, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36515542

RESUMO

A core challenge in global change biology is to predict how species will respond to future environmental change and to manage these responses. To make such predictions and management actions robust to novel futures, we need to accurately characterize how organisms experience their environments and the biological mechanisms by which they respond. All organisms are thermodynamically connected to their environments through the exchange of heat and water at fine spatial and temporal scales and this exchange can be captured with biophysical models. Although mechanistic models based on biophysical ecology have a long history of development and application, their use in global change biology remains limited despite their enormous promise and increasingly accessible software. We contend that greater understanding and training in the theory and methods of biophysical ecology is vital to expand their application. Our review shows how biophysical models can be implemented to understand and predict climate change impacts on species' behavior, phenology, survival, distribution, and abundance. It also illustrates the types of outputs that can be generated, and the data inputs required for different implementations. Examples range from simple calculations of body temperature at a particular site and time, to more complex analyses of species' distribution limits based on projected energy and water balances, accounting for behavior and phenology. We outline challenges that currently limit the widespread application of biophysical models relating to data availability, training, and the lack of common software ecosystems. We also discuss progress and future developments that could allow these models to be applied to many species across large spatial extents and timeframes. Finally, we highlight how biophysical models are uniquely suited to solve global change biology problems that involve predicting and interpreting responses to environmental variability and extremes, multiple or shifting constraints, and novel abiotic or biotic environments.


Assuntos
Mudança Climática , Ecossistema , Ecologia , Previsões , Temperatura Alta
6.
Integr Org Biol ; 4(1): obac016, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35692903

RESUMO

Organisms living in seasonal environments often adjust physiological capacities and sensitivities in response to (or in anticipation of) environment shifts. Such physiological and morphological adjustments ("acclimation" and related terms) inspire opportunities to explore the mechanistic bases underlying these adjustments, to detect cues inducing adjustments, and to elucidate their ecological and evolutionary consequences. Seasonal adjustments ("seasonal acclimation") can be detected either by measuring physiological capacities and sensitivities of organisms retrieved directly from nature (or outdoor enclosures) in different seasons or less directly by rearing and measuring organisms maintained in the laboratory under conditions that attempt to mimic or track natural ones. But mimicking natural conditions in the laboratory is challenging-doing so requires prior natural-history knowledge of ecologically relevant body temperature cycles, photoperiods, food rations, social environments, among other variables. We argue that traditional laboratory-based conditions usually fail to approximate natural seasonal conditions (temperature, photoperiod, food, "lockdown"). Consequently, whether the resulting acclimation shifts correctly approximate those in nature is uncertain, and sometimes is dubious. We argue that background natural history information provides opportunities to design acclimation protocols that are not only more ecologically relevant, but also serve as templates for testing the validity of traditional protocols. Finally, we suggest several best practices to help enhance ecological realism.


Les organismes vivant dans des environnements saisonniers ajustent souvent leurs capacités et leurs sensibilités physiologiques en réponse (ou en prévision de) aux changements environnementaux. De tels ajustements physiologiques et morphologiques (« acclimatation ¼ et termes apparentés) offrent l"opportunité d'explorer les mécanismes sous-jacents à ces ajustements, de détecter les indices qui les induisent et d'élucider leurs conséquences écologiques et évolutives. Les ajustements saisonniers ("acclimatation saisonnière") peuvent être détectés soit en mesurant les capacités physiologiques et les sensibilités d'organismes prélevés directement dans la nature (ou dans des enclos extérieurs) à différentes saisons, soit de manière moins directe en élevant et en mesurant des organismes maintenus en laboratoire dans des conditions qui tentent d"imiter ou de suivre les conditions naturelles. Mais il est difficile de reproduire les conditions naturelles en laboratoire car il faut pour cela connaître les cycles de température corporelle, la photopériode, le régime alimentaire, les environnements sociaux, entre autres variables pertinentes d'un point de vue écologique. Nous argumentons que les conditions traditionnellement utilisées en laboratoire ne parviennent généralement pas à se rapprocher des conditions saisonnières naturelles (température, photopériode, nourriture, « confinement ¼). Par conséquent, il n"est pas certain, et parfois douteux, que les écarts d"acclimatation qui en résultent se rapprochent correctement de ceux de la nature. Nous soutenons que les informations de base sur l"histoire naturelle offrent la possibilité de concevoir des protocoles d"acclimatation qui sont non seulement plus pertinents sur le plan écologique, mais servent également de modèles pour tester la validité des protocoles traditionnels. Enfin, nous suggérons plusieurs bonnes pratiques pour aider à améliorer le réalisme écologique.


Los organismos que viven en ambientes estacionales pueden ajustar sus capacidades y sensibilidades fisiológicas en respuesta (o en anticipación) a cambios ambientales. Estos ajustes fisiológicos y morfológicos ("aclimatación" y términos afines) dan la oportunidad para explorar el mecanismo que subyace a estos ajustes, también para detectar las señales que inducen tales ajustes y finalmente para dilucidar sus consecuencias ecológicas y evolutivas. Los ajustes estacionales ("aclimatación estacional") se pueden detectar midiendo las capacidades y sensibilidades fisiológicas de los organismos, ya sea en especímenes extraídos directamente de la naturaleza (o recintos al aire libre) en diferentes estaciones, como también, de una manera menos directa, en especímenes criados y mantenidos en el laboratorio bajo condiciones que simulan las condiciones naturales y sus cambios estacionales. Sin embargo, esta simulación en el laboratorio es un desafío; hacerlo requiere un conocimiento previo de la historia natural de los ciclos de temperatura corporal, los fotoperíodos, las raciones de alimentos, los entornos sociales, entre otras variables ecológicamente relevantes. Argumentamos que las condiciones tradicionales de laboratorio generalmente no se aproximan a las condiciones estacionales naturales (temperatura, fotoperíodo, comida, "bloqueo"). En consecuencia, es incierto y, a veces, dudoso si los cambios de aclimatación resultantes se aproximan correctamente a los de la naturaleza. Así también, la información de antecedentes de la historia natural brinda oportunidades para diseñar protocolos de aclimatación que no solo son más relevantes desde el punto de vista ecológico, sino que también sirven como plantillas para probar la validez de los protocolos tradicionales. Finalmente, sugerimos varias mejoras prácticas que pueden ayudar a lograr un realismo ecológico optimizado en las simulaciones de laboratorio.

7.
Curr Opin Insect Sci ; 52: 100897, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35257968

RESUMO

Phenological shifts vary within and among insect species and locations based on exposure and sensitivity to climate change. Shifts in environmental conditions and seasonal constraints along elevation and latitudinal gradients can select for differences in temperature sensitivity that generate differential phenological shifts. I examine the phenological implications of observed variation in developmental traits. Coupling physiological and ecological insight to link the environmental sensitivity of development to phenology and fitness offers promise in understanding variable phenological responses to climate change and their community and ecosystem implications. A key challenge in establishing these linkages is extrapolating controlled, laboratory experiments to temporally variable, natural environments. New lab and field experiments that incorporate realistic environmental variation are needed to test the extrapolations. Establishing the linkages can aid understanding and anticipating impacts of climate change on insects.


Assuntos
Mudança Climática , Ecossistema , Animais , Insetos , Estações do Ano , Temperatura
8.
Integr Comp Biol ; 61(6): 2244-2254, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34160617

RESUMO

Both mathematical models and biological model systems stand as tractable representations of complex biological systems or behaviors. They facilitate research and provide insights, and they can describe general rules. Models that represent biological processes or formalize general hypotheses are essential to any broad understanding. Mathematical or biological models necessarily omit details of the natural systems and thus may ultimately be "incorrect" representations. A key challenge is that tractability requires relatively simple models but simplification can result in models that are incorrect in their qualitative, broad implications if the abstracted details matter. Our paper discusses this tension, and how we can improve our inferences from models. We advocate for further efforts dedicated to model development, improvement, and acceptance by the scientific community, all of which may necessitate a more explicit discussion of the purpose and power of models. We argue that models should play a central role in reintegrating biology as a way to test our integrated understanding of how molecules, cells, organs, organisms, populations, and ecosystems function.


Assuntos
Ecossistema , Biologia de Sistemas , Animais , Modelos Biológicos
9.
Front Physiol ; 12: 738992, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803731

RESUMO

Populations of insects can differ in how sensitive their development, growth, and performance are to environmental conditions such as temperature and daylength. The environmental sensitivity of development can alter phenology (seasonal timing) and ecology. Warming accelerates development of most populations. However, high-elevation and season-limited populations can exhibit developmental plasticity to either advance or prolong development depending on conditions. We examine how diurnal temperature variation and daylength interact to shape growth, development, and performance of several populations of the montane grasshopper, Melanoplus boulderensis, along an elevation gradient. We then compare these experimental results to observed patterns of development in the field. Although populations exhibited similar thermal sensitivities of development under long-day conditions, development of high-elevation populations was more sensitive to temperature under short-day conditions. This developmental plasticity resulted in rapid development of high elevation populations in short-day conditions with high temperature variability, consistent with their observed capacity for rapid development in the field when conditions are permissive early in the season. Notably, accelerated development generally did not decrease body size or alter body shape. Developmental conditions did not strongly influence thermal tolerance but altered the temperature dependence of performance in difficult-to-predict ways. In sum, the high-elevation and season-limited populations exhibited developmental plasticity that enables advancing or prolonging development consistent with field phenology. Our results suggest these patterns are driven by the thermal sensitivity of development increasing when days are short early in the season compared to when days are long later in the season. Developmental plasticity will shape phenological responses to climate change with potential implications for community and ecosystem structure.

10.
J Anim Ecol ; 90(5): 1252-1263, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33630307

RESUMO

Species with different life histories and communities that vary in their seasonal constraints tend to shift their phenology (seasonal timing) differentially in response to climate warming. We investigate how these variable phenological shifts aggregate to influence phenological overlap within communities. Phenological advancements of later season species and extended durations of early season species may increase phenological overlap, with implications for species' interactions such as resource competition. We leverage extensive historic (1958-1960) and recent (2006-2015) weekly survey data for communities of grasshoppers along a montane elevation gradient to assess the impact of climate on shifts in the phenology and abundance distributions of species. We then examine how these responses are influenced by the seasonal timing of species and elevation, and how in aggregate they influence degrees of phenological overlap within communities. In warmer years, abundance distributions shift earlier in the season and become broader. Total abundance responds variably among species and we do not detect a significant response across species. Shifts in abundance distributions are not strongly shaped by species' seasonal timing or sites of variable elevations. The area of phenological overlap increases in warmer years due to shifts in the relative seasonal timing of compared species. Species that overwinter as nymphs increasingly overlap with later season species that advance their phenology. The days of phenological overlap also increase in warm years but the response varies across sites of variable elevation. Our phenological overlap metric based on comparing single events-the dates of peak abundance-does not shift significantly with warming. Phenological shifts are more complex than shifts in single dates such as first occurrence. As abundance distributions shift earlier and become broader in warm years, phenological overlap increases. Our analysis suggests that overall grasshopper abundance is relatively robust to climate and associated phenological shifts but we find that increased overlap can decrease abundance, potentially by strengthening species interactions such as resource competition.


Assuntos
Mudança Climática , Gafanhotos , Animais , Clima , Estações do Ano , Temperatura
11.
J Exp Biol ; 224(Pt Suppl 1)2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627458

RESUMO

Organisms respond to shifts in climate means and variability via distinct mechanisms. Accounting for these differential responses and appropriately aggregating them is central to understanding and predicting responses to climate variability and change. Separately considering fitness components can clarify organismal responses: fecundity is primarily an integrated, additive response to chronic environmental conditions over time via mechanisms such as energy use and acquisition, whereas survival can be strongly influenced by short-term, extreme environmental conditions. In many systems, the relative importance of fecundity and survival constraints changes systematically along climate gradients, with fecundity constraints dominating at high latitudes or altitudes (i.e. leading range edges as climate warms), and survival constraints dominating at trailing range edges. Incorporating these systematic differences in models may improve predictions of responses to recent climate change over models that assume similar processes along environmental gradients. We explore how detecting and predicting shifts in fitness constraints can improve our ability to forecast responses to climate gradients and change.


Assuntos
Mudança Climática , Fertilidade
12.
Curr Opin Insect Sci ; 41: 17-24, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32599547

RESUMO

Insects have distinct life stages that can differ in their responses to environmental factors. We discuss empirical evidence and theoretical models for ontogenetic variation in thermal sensitivity and performance curves (TPCs). Data on lower thermal limits for development (T0) demonstrate variation between stages within a species that is of comparable magnitude to variation among species; we illustrate the consequences of such ontogenetic variation for developmental responses to changing temperature. Ontogenetic variation in optimal temperatures and upper thermal limits has been reported in some systems, but current data are too limited to identify general patterns. The shapes of TPCs for different fitness components such as juvenile survival, adult fecundity, and generation time differ in characteristic ways, with important consequences for understanding fitness in varying thermal environments. We highlight a theoretical framework for incorporating ontogenetic variation into process-based models of population responses to seasonal variation and climate change.


Assuntos
Mudança Climática , Insetos/fisiologia , Estágios do Ciclo de Vida , Temperatura , Adaptação Fisiológica , Animais , Fertilidade/fisiologia , Insetos/crescimento & desenvolvimento
13.
Ecol Evol ; 10(2): 980-997, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32015859

RESUMO

Species responses to environmental change are likely to depend on existing genetic and phenotypic variation, as well as evolutionary potential. A key challenge is to determine whether gene flow might facilitate or impede genomic divergence among populations responding to environmental change, and if emergent phenotypic variation is dependent on gene flow rates. A general expectation is that patterns of genetic differentiation in a set of codistributed species reflect differences in dispersal ability. In less dispersive species, we predict greater genetic divergence and reduced gene flow. This could lead to covariation in life-history traits due to local adaptation, although plasticity or drift could mirror these patterns. We compare genome-wide patterns of genetic structure in four phenotypically variable grasshopper species along a steep elevation gradient near Boulder, Colorado, and test the hypothesis that genomic differentiation is greater in short-winged grasshopper species, and statistically associated with variation in growth, reproductive, and physiological traits along this gradient. In addition, we estimate rates of gene flow under competing demographic models, as well as potential gene flow through surveys of phenological overlap among populations within a species. All species exhibit genetic structure along the elevation gradient and limited gene flow. The most pronounced genetic divergence appears in short-winged (less dispersive) species, which also exhibit less phenological overlap among populations. A high-elevation population of the most widespread species, Melanoplus sanguinipes, appears to be a sink population derived from low elevation populations. While dispersal ability has a clear connection to the genetic structure in different species, genetic distance does not predict growth, reproductive, or physiological trait variation in any species, requiring further investigation to clearly link phenotypic divergence to local adaptation.

14.
Artigo em Inglês | MEDLINE | ID: mdl-30455218

RESUMO

Museum specimens offer a largely untapped resource for detecting morphological shifts in response to climate change. However, morphological shifts can be obscured by shifts in phenology or distribution or sampling biases. Additionally, interpreting phenotypic shifts requires distinguishing whether they result from plastic or genetic changes. Previous studies using collections have documented consistent historical size changes, but the limited studies of other morphological traits have often failed to support, or even test, hypotheses. We explore the potential of collections by investigating shifts in the functionally significant coloration of a montane butterfly, Colias meadii, over the past 60 years within three North American geographical regions. We find declines in ventral wing melanism, which correspond to reduced absorption of solar radiation and thus reduced risk of overheating, in two regions. However, contrary to expected responses to climate warming, we find melanism increases in the most thoroughly sampled region. Relationships among temperature, phenology and morphology vary across years and complicate the distinction between plastic and genetic responses. Differences in these relationships may account for the differing morphological shifts among regions. Our findings highlight the promise of using museum specimens to test mechanistic hypotheses for shifts in functional traits, which is essential for deciphering interacting responses to climate change.This article is part of the theme issue 'Biological collections for understanding biodiversity in the Anthropocene'.


Assuntos
Borboletas/anatomia & histologia , Borboletas/fisiologia , Mudança Climática , Manejo de Espécimes , Alberta , Animais , Borboletas/crescimento & desenvolvimento , Colorado , Museus , Noroeste dos Estados Unidos
15.
Evol Appl ; 11(8): 1231-1244, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30151036

RESUMO

Species have responded to climate change via seasonal (phenological) shifts, morphological plasticity, and evolutionary adaptation, but how these responses contribute to changes and variation in population fitness are poorly understood. We assess the interactions and relative importance of these responses for fitness in a montane butterfly, Colias eriphyle, along an elevational gradient. Because environmental temperatures affect developmental rates of each life stage, populations along the gradients differ in phenological timing and the number of generations each year. Our focal phenotype, wing solar absorptivity of adult butterflies, exhibits local adaptation across elevation and responds plastically to developmental temperatures. We integrate climatic data for the past half-century with microclimate, developmental, biophysical, demographic, and evolutionary models for this system to predict how phenology, plasticity, and evolution contribute to phenotypic and fitness variation along the gradient. We predict that phenological advancements incompletely compensate for climate warming, and also influence morphological plasticity. Climate change is predicted to increase mean population fitness in the first seasonal generation at high elevation, but decrease mean fitness in the summer generations at low elevation. Phenological shifts reduce the interannual variation in directional selection and morphology, but do not have consistent effects on variation in mean fitness. Morphological plasticity and its evolution can substantially increase population fitness and adaptation to climate change at low elevations, but environmental unpredictability limits adaptive plastic and evolutionary responses at high elevations. Phenological shifts also decrease the relative fitness advantages of morphological plasticity and evolution. Our results illustrate how the potential contributions of phenological and morphological plasticity and of evolution to climate change adaptation can vary along environmental gradients and how environmental variability will limit adaptive responses to climate change in montane regions.

17.
Integr Comp Biol ; 58(1): 38-51, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29701771

RESUMO

Despite the pressing need for accurate forecasts of ecological and evolutionary responses to environmental change, commonly used modeling approaches exhibit mixed performance because they omit many important aspects of how organisms respond to spatially and temporally variable environments. Integrating models based on organismal phenotypes at the physiological, performance, and fitness levels can improve model performance. We summarize current limitations of environmental data and models and discuss potential remedies. The paper reviews emerging techniques for sensing environments at fine spatial and temporal scales, accounting for environmental extremes, and capturing how organisms experience the environment. Intertidal mussel data illustrate biologically important aspects of environmental variability. We then discuss key challenges in translating environmental conditions into organismal performance including accounting for the varied timescales of physiological processes, for responses to environmental fluctuations including the onset of stress and other thresholds, and for how environmental sensitivities vary across lifecycles. We call for the creation of phenotypic databases to parameterize forecasting models and advocate for improved sharing of model code and data for model testing. We conclude with challenges in organismal biology that must be solved to improve forecasts over the next decade.


Assuntos
Mudança Climática , Invertebrados/fisiologia , Fenômenos Fisiológicos Vegetais , Vertebrados/fisiologia , Animais , Bivalves/fisiologia , Meio Ambiente , Modelos Biológicos
18.
Ecol Evol ; 8(24): 12375-12385, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30619552

RESUMO

Mechanistic approaches for predicting the ranges of endotherms are needed to forecast their responses to environmental change. We test whether physiological constraints on maximum metabolic rate and the factor by which endotherms can elevate their metabolism (metabolic expansibility) influence cold range limits for mammal and bird species. We examine metabolic expansibility at the cold range boundary (MECRB) and whether species' traits can predict variability in MECRB and then use MECRB as an initial approach to project range shifts for 210 mammal and 61 bird species. We find evidence for metabolic constraints: the distributions of metabolic expansibility at the cold range boundary peak at similar values for birds (2.7) and mammals (3.2). The right skewed distributions suggest some species have adapted to elevate or evade metabolic constraints. Mammals exhibit greater skew than birds, consistent with their diverse thermoregulatory adaptations and behaviors. Mammal and bird species that are small and occupy low trophic levels exhibit high levels of MECRB. Mammals with high MECRB tend to hibernate or use torpor. Predicted metabolic rates at the cold range boundaries represent large energetic expenditures (>50% of maximum metabolic rates). We project species to shift their cold range boundaries poleward by an average of 3.9° latitude by 2070 if metabolic constraints remain constant. Our analysis suggests that metabolic constraints provide a viable mechanism for initial projections of the cold range boundaries for endotherms. However, errors and approximations in estimating metabolic constraints (e.g., acclimation responses) and evasion of these constraints (e.g., torpor/hibernation, microclimate selection) highlight the need for more detailed, taxa-specific mechanistic models. Even coarse considerations of metabolism will likely lead to improved predictions over exclusively considering thermal tolerance for endotherms.

19.
Integr Comp Biol ; 57(5): 921-933, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29045649

RESUMO

Seasonality is a critically important aspect of environmental variability, and strongly shapes all aspects of life for organisms living in highly seasonal environments. Seasonality has played a key role in generating biodiversity, and has driven the evolution of extreme physiological adaptations and behaviors such as migration and hibernation. Fluctuating selection pressures on survival and fecundity between summer and winter provide a complex selective landscape, which can be met by a combination of three outcomes of adaptive evolution: genetic polymorphism, phenotypic plasticity, and bet-hedging. Here, we have identified four important research questions with the goal of advancing our understanding of evolutionary impacts of seasonality. First, we ask how characteristics of environments and species will determine which adaptive response occurs. Relevant characteristics include costs and limits of plasticity, predictability, and reliability of cues, and grain of environmental variation relative to generation time. A second important question is how phenological shifts will amplify or ameliorate selection on physiological hardiness. Shifts in phenology can preserve the thermal niche despite shifts in climate, but may fail to completely conserve the niche or may even expose life stages to conditions that cause mortality. Considering distinct environmental sensitivities of life history stages will be key to refining models that forecast susceptibility to climate change. Third, we must identify critical physiological phenotypes that underlie seasonal adaptation and work toward understanding the genetic architectures of these responses. These architectures are key for predicting evolutionary responses. Pleiotropic genes that regulate multiple responses to changing seasons may facilitate coordination among functionally related traits, or conversely may constrain the expression of optimal phenotypes. Finally, we must advance our understanding of how changes in seasonal fluctuations are impacting ecological interaction networks. We should move beyond simple dyadic interactions, such as predator prey dynamics, and understand how these interactions scale up to affect ecological interaction networks. As global climate change alters many aspects of seasonal variability, including extreme events and changes in mean conditions, organisms must respond appropriately or go extinct. The outcome of adaptation to seasonality will determine responses to climate change.


Assuntos
Adaptação Biológica , Evolução Biológica , Clima , Traços de História de Vida , Fenótipo , Animais , Mudança Climática , Fenômenos Fisiológicos Vegetais/genética , Estações do Ano
20.
Proc Biol Sci ; 284(1860)2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28814652

RESUMO

The relative contributions of phenotypic plasticity and adaptive evolution to the responses of species to recent and future climate change are poorly understood. We combine recent (1960-2010) climate and phenotypic data with microclimate, heat balance, demographic and evolutionary models to address this issue for a montane butterfly, Colias eriphyle, along an elevational gradient. Our focal phenotype, wing solar absorptivity, responds plastically to developmental (pupal) temperatures and plays a central role in thermoregulatory adaptation in adults. Here, we show that both the phenotypic and adaptive consequences of plasticity vary with elevation. Seasonal changes in weather generate seasonal variation in phenotypic selection on mean and plasticity of absorptivity, especially at lower elevations. In response to climate change in the past 60 years, our models predict evolutionary declines in mean absorptivity (but little change in plasticity) at high elevations, and evolutionary increases in plasticity (but little change in mean) at low elevation. The importance of plasticity depends on the magnitude of seasonal variation in climate relative to interannual variation. Our results suggest that selection and evolution of both trait means and plasticity can contribute to adaptive response to climate change in this system. They also illustrate how plasticity can facilitate rather than retard adaptive evolutionary responses to directional climate change in seasonal environments.


Assuntos
Aclimatação/genética , Evolução Biológica , Borboletas/genética , Mudança Climática , Altitude , Animais , Borboletas/fisiologia , Microclima , Modelos Biológicos , Fenótipo , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...